On the boundedness of varieties of general type

Christopher Hacon

University of Utah

July, 2015
Outline of the talk

1. Introduction and Preliminaries
2. Boundedness of Canonical models
The goal of the remaining two lectures is to sketch the proof of the following.

Theorem (Hacon-McKernan-Xu)

Fix \(n \in \mathbb{N}, \ C > 0 \) and \(C \subset [0, 1] \cap \mathbb{Q} \) a DCC set, then there exists an integer \(r \in \mathbb{N} \) such that if \((X, B)\) is a \(n \)-dimensional SLC model with \(B \in C \) and \((K_X + B)^n = C\), then \(r(K_X + B) \) is very ample.

- SLC model: \((X, B)\) projective SLC pair over \(\mathbb{C} \), \(K_X + B \) ample (we will focus on LC models).
- Alexeev \(n = 2 \).
- We begin by reviewing a few preliminaries.
Let D be an \mathbb{R}-divisor on a normal proper n-dimensional variety X and define the **volume** of D by

$$\text{vol}(D) = \lim_{m \to \infty} \frac{h^0(mD)}{m^n/n!} = \lim_{m \to \infty} \frac{h^0(mD)}{m^n/n!}.$$

We say that D is **big** iff $\text{vol}(D) > 0$ in which case, by a lemma of Fujita, we may write $D \sim_\mathbb{Q} A + E$ where A is an ample \mathbb{Q}-Cartier divisor and $E \geq 0$.

Christopher Hacon

On the boundedness of varieties of general type
If D is (\mathbb{Q}-Cartier and) nef, so that $D \cdot C \geq 0$ for any curve $C \subset X$, then $\text{vol}(D) = D^n$.

It is easy to see that if $f : X \to Y$ is a birational morphism of normal projective varieties, then $\text{vol}(f_* D) \geq \text{vol}(D)$ and

if G is an \mathbb{R}-Cartier divisor on Y such that $D - f^* G$ is effective and f-exceptional, then $\text{vol}(D) = \text{vol}(G)$.
We will often apply this to log pairs in the following form.

Let \((X, B)\) be a log pair \((K_X + B \text{ is } \mathbb{R}-\text{Cartier})\) and define the following \(b\)-divisors. If \(f : Y \to X\) is a resolution and \(f_* K_Y = K_X\), then

\[
K_Y = f^*(K_X+B)+A_{B,Y}, \quad K_Y+L_{B,Y} = f^*(K_X+B)+E_{B,Y}
\]

where \(L_{B,Y}, E_{B,Y} \geq 0\) and \(L_{B,Y} \land E_{B,Y} = 0\) (for \(a, b \in \mathbb{R}\), \(a \land b = \min\{a, b\}\)).
Volumes

- We also let $M_{B,Y} = f^{-1}_* B + \text{Ex}(f)$ so that $M_{B,Y} \geq L_{B,Y}$ if (X, B) is log canonical and then

$$\text{vol}(K_X + B) = \text{vol}(K_Y + L_{B,Y}) = \text{vol}(K_Y + M_{B,Y}).$$

- If G is an \mathbb{R}-Cartier divisor on Y with $f_* G = B$, then we also have $\text{vol}(K_Y + G) = \text{vol}(K_Y + L_{B,Y} \wedge G)$. Since

$$f_* H^0(Y, m(K_Y + G)) \subset H^0(X, m(K_X + B)) \cong H^0(Y, m(K_Y + L_{B,Y})).$$
We will need the following easy but important result.

Theorem (Easy addition)

Let $f : X \rightarrow S$ be a projective morphism of smooth varieties, then
\[
\kappa(X) \leq \kappa(X_s) + \dim S \text{ where } s \in S \text{ is general. In particular if } X \text{ has general type, then so does } X_s.
\]

• Recall that X is of general type if (replacing X by a resolution) $\kappa(X) = \dim X$, i.e. if $\text{vol}(K_X) > 0$.
• By definition $\kappa(X) = \text{tr.deg.}_\mathbb{C} R(K_X) - 1$.
Thus, if X is of general type then X_s is of general type.

The idea is as follows. If X has general type (the other cases are similar), we may write $K_X \sim_{\mathbb{Q}} A + E$ where A is ample and E is effective.

But then $K_{X_s} = K_{X}|_{X_s} \sim_{\mathbb{Q}} A|_{X_s} + E|_{X_s}$ where $A|_{X_s}$ is ample and $E|_{X_s}$ is effective.

We have the following important consequence.
Theorem

Let $Z \to T$ be a projective morphism and $f : Z \to X$ a dominant morphism to a projective variety. If X is of general type, then so is Z_t for general $t \in T$.

Christopher Hacon

On the boundedness of varieties of general type
Let $Z \to T$ be a projective morphism and $f : Z \to X$ a dominant morphism to a projective variety. If X is of general type, then so is Z_t for general $t \in T$.

- Cutting by generic hyperplanes on T, we may assume that $Z \to X$ is generically finite.
- Replacing X and $Z \to T$ by appropriate birational models we may assume that X, Z, T are smooth.
- Since $f : Z \to X$ is generically finite, we have $K_Z = f^*K_X + R$ where $R \geq 0$ is the ramification divisor.
- Thus Z is also of general type.
- By the easy addition theorem, Z_t is of general type.
Let (X, B) be a **log pair** so that X is normal and B is an \mathbb{R}-divisor and $K_X + B$ is \mathbb{R}-Cartier.

The b-divisors A, L, E were defined so that $A = E - L$ and

$$K_Y + L_{B,Y} = f^*(K_X + B) + E_{B,Y}, \quad L_{B,Y} \wedge E_{B,Y} = 0.$$

We say that (X, B) is **log canonical / LC** resp. **Kawamata log terminal / KLT** if for any prime divisor E over X, we have $\text{mult}_E(L) \leq 1$, resp. $\text{mult}_E(L) < 1$ (i.e. $\text{mult}_E(A) > -1$).
We say that \((X, B)\) is **canonical** (resp. **terminal**) if
\[\text{mult}_E(A_B) \geq 0 \] (resp. \[\text{mult}_E(A_B) > 0 \]) for all divisors \(E\)
exceptional over \(X\) (in particular \(L_{B,Y} = f_*^{-1}B\)).

We say that \((X, S + B)\) is **PLT** if \(S = \lfloor S + B \rfloor\) is a prime divisor and
\[\text{mult}_E(L_{B,Y}) < 1 \] for any other prime divisor over \(X\).
The coefficients of $A = L - E$ are a measure of the singularities of (X, B). The infimum of these coefficients is the **total discrepancy**.

More negative total discrepancies (resp. discrepancies) correspond to more singular pairs. $(\geq -1, > -1$, (resp. ≥ 0, > 0) correspond to LC, KLT, (resp. canonical, terminal)).
The log canonical and KLT conditions can be checked on one (any) log resolution.

If $f: Y \to X$ is the blow up of the vertex of a cone over a rational curve of degree n with exceptional curve E, then by adjunction

$$-2 = (K_Y + E) \cdot E = (\nu^*(K_X) + (a_E + 1)E) \cdot E = -n(a_E + 1).$$

(Since $E^2 = -n$.) Thus $a_E = -1 + \frac{2}{n}$.

The same computation shows that if the curve is elliptic, then $a_E = -1$ and if the curve has genus $g \geq 2$, then $a_E < -1$.

Note that if $a_E < -1$ then the discrepancy is $-\infty$.
Singularities of the MMP

- KLT singularities are rational ($R^i f_* O_Y = 0$ for $i > 0$) and LC singularities are Du Bois (Kollár-Kovács).
- Terminal/canonical singularities arise from minimal/canonical models of smooth varieties X and LC/KLT singularities are the singularities of log canonical models $\text{Proj}(R(K_X + B))$ where (X, B) is a SNC pair with coefficients $0 \leq b_i \leq 1/0 \leq b_i < 1$.
If \(a_P := \text{mult}_P A_B \leq -1 \) (resp. \(< -1 \)), then we say that \(P \) is a **NKLT place** (resp. a **NLC place**) and its image \(f(P) \) is a **center** of NKLT (resp. NLC) singularities.

If \((X, B)\) is LC and \(G \geq 0 \) is an \(\mathbb{R} \)-Cartier divisor, then the **log canonical threshold** is

\[
lct(X, B; G) = \sup\{ c > 0 | (X, D + cG) \text{ is LC} \}.
\]

One can compute log canonical thresholds on a single log resolution (eg, \(\text{lct}(\mathbb{C}^2, 0; \{ y^2 = x^3 \}) = 5/6 \)).
Multiplier ideals (5 minute refresher)

- Let X be smooth, $B \geq 0$, $f : Y \to X$ a log resolution of (X, B) then the **multiplier ideal sheaf** of (X, D) is

 \[J = J(X, B) = f_* \mathcal{O}_Y(K_{Y/X} - [f^*B]) \subset f_* \mathcal{O}_Y(K_{Y/X}) = \mathcal{O}_X. \]

- J is independent of the log resolution.
- $J = \mathcal{O}_X$ iff (X, B) is KLT (as $K_{Y/X} - [f^*B] = [A_Y]$).
- If B is SNC, then $J(B) = \mathcal{O}_X(-[B])$.
- If G Cartier, then $J(G + B) = J(B) \otimes \mathcal{O}_X(-G)$.
- $D_1 \leq D_2$ then $J(D_2) \subset J(D_1)$.
Multiplier ideals

Multiplier ideals $\mathcal{J}(D)$ are a sophisticated measure of the singularities of D.

- $\text{mult}_x(D) \geq n = \dim X$, then $\mathcal{J}(D) \subset \mathfrak{m}_x$ (just blow up $x \in X$).
- (Harder) If $\text{mult}_x(D) < 1$, then $\mathcal{J}(D)_x = \mathcal{O}_{X,x}$.
- $\text{lct}(X, 0; G) = \sup\{t | \mathcal{J}(X, tG) = \mathcal{O}_X\}$.
An easy consequence of Kawamata-Viehweg’s vanishing theorem is the following.

Theorem (Nadel vanishing)

Let X be smooth, $f : X \to Z$ a projective morphism, $D \geq 0$ an \mathbb{R}-divisor, N a Cartier divisor such that $N - D$ is f-nef and f-big, then

$$R^i f_* (\mathcal{O}_X (K_X + N) \otimes \mathcal{J}(D)) = 0 \quad \forall i > 0.$$

At first sight $\mathcal{J}(D)$ is a technical annoyance, but as we will see later it should be viewed as an opportunity.
If H is a smooth divisor on a smooth variety X, $D \geq 0$ an effective \mathbb{R}-divisor on X whose support does not contain H. Then $\mathcal{J}(H, D|_H) \subset \mathcal{J}(X, D) \cdot \mathcal{O}_H$, and

if $0 < s < 1$, then for all $0 < t \ll 1$ we have

$$\mathcal{J}(X, D + (1 - t)H) \cdot \mathcal{O}_H \subset \mathcal{J}(H, (1 - s)D|_H).$$

This is an example of inversion of adjunction. If $\mathcal{J}(H, (1 - s)D|_H) \subset \mathfrak{m}_x$ ($x \in H$ and $0 < s < 1$), then $\mathcal{J}(X, D + (1 - t)H) \subset \mathfrak{m}_x$ for all $0 < t \ll 1$.
(Analog for log pairs) $(X, S + B)$ an effective log pair, $
u : S^\nu \to S$ the normalization of S and $K_{S^\nu} + B_{S^\nu} = \nu^*(K_X + S + B)$, then

1. $(X, S + B)$ is PLT iff (S^ν, B_{S^ν}) is KLT and
2. $(X, S + B)$ is LC iff (S^ν, B_{S^ν}) is LC.

The first is an easy consequence of the connectedness lemma of Kollár and Shokurov, the second is a deep result of Kawakita.
Outline of the talk

1. Introduction and Preliminaries
2. Boundedness of Canonical models
Theorem (Tsuji, Hacon-McKernan, Takayama)

Fix $n \in \mathbb{N}$ and $V > 0$, then there exists $m \in \mathbb{N}$ such that if X is a canonical model, $\dim X = n$ and $K_X^n \leq V$, then mK_X is very ample. (In particular $\{K_X^n\}$ is discrete.)

Tsuji’s idea is to first prove the following weaker result that mK_X is birational and to do this by induction on $n = \dim X$ by first proving the following weaker statements.
Theorem

Fix $n \in \mathbb{N}$, then there exists $A, B, \nu > 0$ such that if X is a canonical model, $\dim X = n$, then

1. rK_X is birational for any $r \geq A(K_X^n)^{-1/n} + B$, and
2. $\mathcal{V}(n) =: \{ K_X^n \}$ is discrete and $K_X^n \geq \nu$ for any canonical model X.

Note that $(1)_n + (2)_n$ imply that rK_X is birational for any integer $r \geq A\nu^{-1/n} + B$.
Birational boundedness

To see that $(1)_n$ implies $(2)_n$, we may assume that $K^n_X \leq V$ e.g. $K^n_X \leq 1$ and let $m = \lceil A(K^n_X)^{-1/n} + B \rceil$.

If Z is the closure of $\phi|_{mK_X}(X)$, then

$$\deg(Z) \leq (mK_X)^n < (A(K^n_X)^{-1/n} + B + 1)^n K^n_X < (A + B + 1)^n.$$

Therefore Z belongs to a bounded family $\mathcal{Z} \rightarrow S$.

Birational boundedness

To see that $(1)_n$ implies $(2)_n$, we may assume that $K^n_X \leq V$ e.g. $K^n_X \leq 1$ and let $m = \lceil A(K^n_X)^{-1/n} + B \rceil$.

If Z is the closure of $\phi|_{mK^n_X|(X)}$, then

$$\deg(Z) \leq (mK^n_X)^n < (A(K^n_X)^{-1/n} + B + 1)^n K^n_X < (A + B + 1)^n.$$

Therefore Z belongs to a bounded family $\mathcal{Z} \to S$.

Let $\mathcal{X}' \to \mathcal{Z}$ be a resolution of this family.

Decomposing S into a finite union of locally closed subsets, we may assume that $\mathcal{X}' \to S$ is a smooth morphism and

$$\{s \in S | \kappa(\mathcal{X}'_s) = \dim \mathcal{X}'_s \}$$

is dense.

By deformation invariance of plurigenera, all fibers \mathcal{X}'_s are of general type and

$$\{\text{vol}(K\mathcal{X}'_s) | s \in S \}$$

is finite and $(2)_n$ follows.
Let $\mathcal{X} \to S$ be the relative canonical model. Then for any canonical model X with $\dim X = n$ and $\text{vol}(K_X) < V$, we have $s \in S$ s.t. $X \cong \mathcal{X}_s$.

It is easy to see that there is an integer $m \in \mathbb{N}$ such that $mK_{\mathcal{X}_s}$ is very ample for all $s \in S$ and hence mK_X is very ample for any canonical model of dimension n with $K^n_X \leq V$. (In particular $\text{vol}(K_X) \geq 1/m^n$.)

Thus, the set of all n-dimensional canonical models with volume bounded from above $0 < K^n_X \leq V$ is bounded.
It remains to show that \((1)_{n-1} + (2)_{n-1}\) implies \((1)_{n}\).

The main idea is, for any very general points \(x, y \in X\), to produce a divisor \(D \sim_{\mathbb{Q}} \lambda K_X\) such that:

1. \(\mathcal{J}(D) \subset m_y\) and on a neighborhood of \(x\), \(\mathcal{J}(D) = m_x\), and
2. \(\lambda < m - 1 = \lceil A(K^n_X)^{-1/n} + B \rceil - 1\).
Birational boundedness

- It remains to show that \((1)_{n-1} + (2)_{n-1}\) implies \((1)_n\).
- The main idea is, for any very general points \(x, y \in X\), to produce a divisor \(D \sim_{\mathbb{Q}} \lambda K_X\) such that
 1. \(\mathcal{J}(D) \subset m_y\) and on a neighborhood of \(x\), \(\mathcal{J}(D) = m_x\), and
 2. \(\lambda < m - 1 = \lceil A(K^n_X)^{-1/n} + B \rceil - 1\).
- By Nadel vanishing (assuming for simplicity that \(X\) is smooth), \(H^1(\omega^m_X \otimes \mathcal{J}(D)) = 0\) and hence \(H^0(\omega^m_X) \to H^0(\omega^m_X \otimes O_X/\mathcal{J}(D))\) is surjective.
Birational boundedness

- It remains to show that $(1)_{n-1} + (2)_{n-1}$ implies $(1)_n$.
- The main idea is, for any very general points $x, y \in X$, to produce a divisor $D \sim \mathbb{Q} \lambda K_X$ such that
 1. $\mathcal{J}(D) \subset m_y$ and on a neighborhood of x, $\mathcal{J}(D) = m_x$, and
 2. $\lambda < m - 1 = \lceil A(K^n_X)^{-1/n} + B \rceil - 1$.
- By Nadel vanishing (assuming for simplicity that X is smooth), $H^1(\omega^m_X \otimes \mathcal{J}(D)) = 0$ and hence $H^0(\omega^m_X) \to H^0(\omega^m_X \otimes \mathcal{O}_X/\mathcal{J}(D))$ is surjective.
- Since \mathcal{C}_x is a summand of $\mathcal{O}_X/\mathcal{J}(D)$, and $\mathcal{J}(D) \subset m_y$ we have produced sections vanishing at y but not at x.
Birational boundedness

- It remains to show that $(1)_{n-1} + (2)_{n-1}$ implies $(1)_n$.
- The main idea is, for any very general points $x, y \in X$, to produce a divisor $D \sim_{\mathbb{Q}} \lambda K_X$ such that
 1. $\mathcal{J}(D) \subset \mathfrak{m}_y$ and on a neighborhood of x, $\mathcal{J}(D) = \mathfrak{m}_x$, and
 2. $\lambda < m - 1 = \lceil A(K_X^n)^{-1/n} + B \rceil - 1$.
- By Nadel vanishing (assuming for simplicity that X is smooth), $H^1(\omega_X^m \otimes \mathcal{J}(D)) = 0$ and hence $H^0(\omega_X^m) \to H^0(\omega_X^m \otimes \mathcal{O}_X/\mathcal{J}(D))$ is surjective.
- Since \mathcal{C}_x is a summand of $\mathcal{O}_X/\mathcal{J}(D)$, and $\mathcal{J}(D) \subset \mathfrak{m}_y$ we have produced sections vanishing at y but not at x.
- This implies that mK_X is birational.
- In what follows we will focus on the condition $\mathcal{J}(D) = \mathfrak{m}_x$ (it is not much harder to guarantee $\mathcal{J}(D) \subset \mathfrak{m}_y$.)
Birational boundedness

- We have $h^0(mK_X) = \frac{m^n}{n!} K^n_X + o(m^n)$ whilst vanishing at a smooth point to order k is $k^n/n! + o(k^n)$ conditions.
- Thus we will find a divisor $D_1 \sim_{\mathbb{Q}} \lambda_1 K_X$ with $\text{mult}_X(D_1) \geq n$ and $\lambda_1 = O((K^n_X)^{-1/n})$.
- Locally we have $\mathcal{J}(D_1) = \mathcal{I}_Z \subset m_X$ where we may assume that Z is reduced and irreducible.
- Our goal is to cut down Z to a point.
To do this, we need to bound \((K_X|_Z)^{\dim Z}\) from below.

Since \(x \in X\) is general, \(Z\) is of general type and so by induction on the dimension \(\vol(K_{Z'}) \geq \nu(d) > 0\) where \(d = \dim Z\) and \(Z' \to Z\) is a resolution.

Tsuji’s idea is to use Kawamata’s subadjunction to compare \(\vol(K_{Z'})\) and \(\vol(K_X|_Z) = (K_X|Z)^{\dim Z}\).
Recall that $\mathcal{J}(D_1) = \mathcal{I}_Z$ near $x \in Z \subset X$ and $D_1 \sim_{\mathbb{Q}} \lambda_1 K_X$.

Assume for simplicity that Z is smooth.

Then, by Kawamata subadjunction (as K_X is ample)\[(1 + \lambda_1 + \epsilon)K_X|_Z \sim_{\mathbb{Q}} (K_X + D_1 + \epsilon K_X)|_Z \geq_{\mathbb{Q}} K_Z \]

and so $(K_X|_Z)^d \geq \left(\frac{1}{1+\lambda_1}\right)^d \cdot \nu(d)$ where $d = \text{dim } Z$.
We now pick a very general point $x' \in Z$ and $D'_Z \sim_{\mathbb{Q}} \lambda' K_X|_Z$ such that $\text{mult}_{x'}(D'_Z) > d$ and $\lambda' \leq d(1 + \lambda_1) + 1$.

Since K_X is ample, by Serre vanishing we may assume that $D'_Z = D'|_Z$ where $D' \sim_{\mathbb{Q}} \lambda' K_X$.

By inversion of adjunction

$m_{x'} \supseteq \mathcal{I}((1 - \delta)D_1 + (1 - \eta)D') = \mathcal{I}_{Z_2}$ where $\text{dim } Z_2 < \text{dim } Z$.
Let $D_2 = (1 - \delta)D_1 + (1 - \eta)D'$ so that $D_2 \sim \lambda_2 K_X$ where $
abla_2 = O((K^n_X)^{-1/n})$.

Note that x' is also a very general point of X.

Thus we may replace x, D_1, Z, λ_1 by x', D_2, Z_2, λ_2.

After $\leq n$ iterations, we may assume that $\dim Z = 0$ i.e. that $\mathcal{J}(D) = \mathfrak{m}_x$ on a neighbourhood of $x \in X$. QED